A novel mouse running wheel that senses individual limb forces: biomechanical validation and in vivo testing.

نویسندگان

  • Grahm C Roach
  • Mangesh Edke
  • Timothy M Griffin
چکیده

Biomechanical data provide fundamental information about changes in musculoskeletal function during development, adaptation, and disease. To facilitate the study of mouse locomotor biomechanics, we modified a standard mouse running wheel to include a force-sensitive rung capable of measuring the normal and tangential forces applied by individual paws. Force data were collected throughout the night using an automated threshold trigger algorithm that synchronized force data with wheel-angle data and a high-speed infrared video file. During the first night of wheel running, mice reached consistent running speeds within the first 40 force events, indicating a rapid habituation to wheel running, given that mice generated >2,000 force-event files/night. Average running speeds and peak normal and tangential forces were consistent throughout the first four nights of running, indicating that one night of running is sufficient to characterize the locomotor biomechanics of healthy mice. Twelve weeks of wheel running significantly increased spontaneous wheel-running speeds (16 vs. 37 m/min), lowered duty factors (ratio of foot-ground contact time to stride time; 0.71 vs. 0.58), and raised hindlimb peak normal forces (93 vs. 115% body wt) compared with inexperienced mice. Peak normal hindlimb-force magnitudes were the primary force component, which were nearly tenfold greater than peak tangential forces. Peak normal hindlimb forces exceed the vertical forces generated during overground running (50-60% body wt), suggesting that wheel running shifts weight support toward the hindlimbs. This force-instrumented running-wheel system provides a comprehensive, noninvasive screening method for monitoring gait biomechanics in mice during spontaneous locomotion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFECT OF AGILITY SHOES ON RUNNING KINETICS IN INDIVIDIUALS WITH GENU VARUS BEFORE AND AFTER FATIGUE PROTOCOL

Background & Aim: Genu varus is one of the most common injuries of the lower limb, which affects posture control by creating internal torque on the ankle and foot joints. The complication of Genu varus is accompanied by the biomechanical change of the lower limb during walking and running. The aim of the present study was to evaluate the effect of using agility shoes on running kinetics in indi...

متن کامل

The mutual effect of navicular drop and the type of foot covering on the contact forces of ankle and knee joints during running

Introduction: One of the best interventions in the field of reducing injury and improving performance is running shoes. Despite this, the research results show that achieving the desired result due to using shoes depends on paying attention to other influencing factors such as foot structure. Therefore, the present study was carried out with the aim of investigating the mutual effect of navicul...

متن کامل

بررسی مؤلفه های نیروی عکس‌العمل زمین در مردان فعال با و بدون دفورمیتی ژنوواروم، طی فاز استانس دویدن

Objectives: Genu Varum deformity is known as a factor disrupting gravity line and force patterns in lower limb and may make the individual more exposed to lower extremity injuries especially in repeated activities like running. The aim of this study was to investigate Ground Reaction Forces in subjects with and without genu varum deformity during running. Methods: Thirty active men were divide...

متن کامل

Biomechanical Analysis of the Influence of SACH Foot and Dynamic-Response Foot in Individual With Unilateral Transtibial Amputee During Running

Objective: Amputation of the lower limb due to loss of part of the musculoskeletal structure reduces performance and increases injury during locomotion. The effect of various types of prosthetic feet has been analyzed in several studies during running. The purpose of this study was a biomechanical analysis of the influence of SACH and Dynamic-Response foot on several kinetic variables in the st...

متن کامل

The Effects of Increasing Running Speed on Three-Dimensional Peak Angle of the Lower Limb Joints in Stance Phase

Objective: Attention can be paid to the biomechanical characteristics of running since the speed of running varies. The aim of the present study was to investigate the effects of increasing running speed on the three-dimensional kinematics of the lower limb’ joints in the stance phase. Methods: The research was quasi-experimental. 27 volunteer subjects ran on a treadmill and the kinematic and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 113 4  شماره 

صفحات  -

تاریخ انتشار 2012